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Heat and mass transport in nanoscale phase transitions induced by 
collision cascades 

A. Caro a. * , M. Alurralde b, R. Saliba ‘, M. Caro ’ 

Abstract 

Irradiation of materials with energetic particles produces changes in the microstructure that affect mechanical properties. 
In previous work we studied the thermal aspects of the quenching of collision cascades that involve nanoscale phase 
transitions between the solid and the liquid states of the target. In this work we present a rigorous treatment of these 
phenomena, including a detailed description of the Stefan problem in three dimensions and diffusion in thermal gradients. 
This approach is oriented to give a quantitative description of the influence of the primary knock-on spectrum on the 
microstructure short after the quenching of the heat spike. 0 1997 Elsevier Science B.V. 

1. Introduction 

Irradiation of materials with energetic particles pro- 
duces changes in many physical properties, in particular it 
alters the microstructure in such a way that it affects 
mechanical properties. The time scale involved in the 
evolution of the microstructure covers from the very early 
collisional stage ( lOP’5 s) to slow diffusion processes 
spanning days or years. 

In a series of previous work we have studied the 
thermal aspects of the quenching of collision cascades, that 
involve nanoscale phase transition between the solid and 
the liquid states of the target material. In this process, 
lasting a few picoseconds, very large thermal gradients as 
well as the solid-liquid interface produce thermodynamic 
forces driving intrinsic defects, impurities or solute ele- 
ments towards aggregation or dissolution. Some of these 
effects, especially involving intrinsic defects, have micro- 
scopically been observed in molecular dynamics computer 
simulations, although a thermodynamic model for the gen- 
eral case is still missing. 

A proper description with predictive power has to 
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consider a series of physical properties that surely play a 
role, like equilibrium phase diagram, diffusion in solid and 
liquid phases, solidification kinetics, elastic, mechanical 
and thermal characteristics of the material, with particular 
emphasis on thermal conductivity and electron-phonon 
interaction. All together it represents a formidable chal- 
lenge and we can say that today most of our knowledge 
relies on qualitative concepts with little, if any, predictive 
power. 

The approach that we proposed in our previous work 
and that we extend here, tries to analyze to which extent 
usual thermodynamics is able to describe this process; the 
method we use is to link thermodynamic modeling to the 
results provided by molecular dynamics and experiments 
when available, trying to highlight the most important 
physical concepts involved. For this link to be realistic, all 
processes beyond thermodynamics, like momentum trans- 
port, shock waves and focusons have to play a minor role. 
Some of these points are discussed in detail in Refs. [l-3]. 

2. Results 

We introduce now the ideas and approximations used 
in our liquid drop model (LDM) [l-3] to better understand 
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the contributions of the present work. In the binary colli- 
sion approximation (BCA) the cascade develops inside a 
solid as a consequence of two body collisions [4]. An atom 
is set into motion if, as a consequence of a collision, it 
receives an energy larger than some cut-off, EC. Similarly 
an atom no longer moves if its energy falls below EC. A 
cascade ends when all atoms have energy below E,. 
Additional parameters are the binding energy, E,, which is 
lost every time an atom is displaced from its perfect lattice 
position and the parameters controlling the electronic 
losses. The energy balance is as follows: The total initial 
energy, i.e.. the kinetic energy of the primary knock-on 
atom, E,,,, is distributed between the inelastic collisions 
with the electrons, E,, the kinetic energy given to sec- 
ondary atoms, E,, the kinetic energy below EC given to 
atoms that are not displaced (this energy is called damage 
energy), E, and the binding energies lost at each displace- 
ment, E,. We have E,, = E, + E, + E,. 

As input of our LDM we use the output of the well 
known Marlowe BCA code [4], which contains the posi- 
tion and kinetic energy of all atoms set into motion during 
the collisional phase of the cascade. Since E, < EPKA, we 
apply a multiplicative factor which is discussed in detail in 
Ref. [l]. This kinetic energy is assumed to be transformed 
into thermal energy in a time of the order of one picosec- 
ond or less and then is transported by the heat equation. 
We showed that this approach gives results in full agree- 
ment with MD for cascade energies where both methods 
can be used. We applied it to different materials and PKA 
energies, and determine the life time, the volume of the 
melt and the ion mixing [2]. Also the intracascade contri- 
bution to radiation enhanced diffusion (RED) was evalu- 
ated [3]. 

Those works were based on a very simple assumption 
concerning the role of the interface in the heat transport 
and a later careful analysis showed that it may not be 
negligible [5]. Also, in our previous work we did not 
consider mass transport but only ion mixing, by just 
integrating a thermally activated process in the volume and 
lifetime of the heat spike. 

In an attempt to interpret the thermal evolution of a 
heat spike using tools derived from near-to-equilibrium 
thermodynamics [5] we observed that as far as the system 
does not undergo a phase transition, linear irreversible 
thermodynamics apply and lattice transport can be de- 
scribed in terms of Fourier equations. However if the heat 
spike rises the temperature of the solid well above the 
melting temperature, our elementary approach (that ne- 
glected latent heat of melting) gave a poor description. The 
correct description should incorporate a treatment of the 
Stefan problem, that is, heat transport in presence of an 
interface. The general 3D case has no analytic solution, but 
a numerical algorithm to solve it has been recently pro- 
posed by Nochetto et al. [6-101. We report here the first 
results of our implementation of these ideas. 

Energy conservation together with Fourier law for heat 
flux leads to the following two-field equations: 

au 
;I, + v.q=o 

q= -K(e)ve 

~~(e)=/~c(~)d~thH(e-H~“,), 
0 111\ 

(1) 

where u is the enthalpy, q is the heat flux, B is the 
temperature, K is the thermal conductivity, c is the heat 
capacity, H is the Heaviside function and A is the latent 
heat of melting. Note that although 0 is a function of u, 
0 = p(u), its inverse is not. Introducing the Kirchhoff 
transform K = K( 01, defined as 

K= 1,” K(s)d.s, 
111\ 

the original system of Eq. (1) becomes 

(2) 
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where the function u = y( K > is obtained from the defini- 
tion of the Kirchhoff transform and the enthalpy; u is a 
discontinuous function of K. 

We skip here the details of the algorithms that allow 
this discontinuity to be dealt with and just say that we 
apply finite elements, implicit discretization to solve these 
equations. For a general reference to this method see Ref. 

[ill. 
As a test we solve a one dimensional temperature 

gradient on a three-dimensional rod, where both exact 
analytic solution and molecular dynamics results are avail- 
able [5]. Fig. 1 shows the temperature profile at different 
times for a sample at uniform initial temperature above 
melting temperature T,, and with an end set at T < T, at 
t = 0. The discontinuous derivative of the temperature at 
T,, is a consequence of the non-zero heat of melting. 

This description should account for the differences 
between the temperature profiles found in molecular dy- 
namics and predicted by the heat equation, as reflected in 
fig. 1 in Ref. [5]. 

It is important to point out that in this analysis no 
mention is done to overheating and undercooling effects 
appearing in first order phase transitions. The reason is that 
on heating, the collisional disorder is such that no traces of 
the crystalline order in the core of the cascade remains, 
facilitating the nucleation of the liquid phase without 
overheating. On the other hand, on cooling, the liquid 
phase is surrounded by a perfect crystal, so there is no 
need of nucleation and growth of a germ of a crystallite. 
This hypothesis is supported by molecular dynamics re- 
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Fig. I. Temperature profile at different times for a sample at 
uniform initial temperature above melting temperature T, and 
with the left end set at T < T, at t = 0. Profiles shown at 
increasing times, as indicated by the arrow. Upper part, two 
snapshots of the sample used in the numerical treatment showing 
the grid and temperature profiles. 

sults of heat spikes induced by collision cascades, where 
none of these effects is observed. 

With a description of energy transport, the next step is 
mass transport. Here again, the first approximation is to 
assume that the Onsager relations [ 12-141 which are de- 
rived for small departures from equilibrium, are still valid 
in systems so far from equilibrium. For mass transport in 
presence of concentration and temperature gradients, these 
relations read 

J= -DVp+VT 

ap 
- -0.J 

nt- 

where J is the particle flux, D is the diffusion coefficient, 
p is the particle density, T is the temperature and cT is the 
kinetic coefficient for the irreversible process linking ther- 
mal gradients to particle motion. 

Most of these coefficients are unknown for the ele- 
ments and the combination of elements of interest, in the 
temperature ranges created by heat spikes. Therefore in 
what follows we present a parametric study to determine 
the characteristics of the process and the first steps to 

Fig. 2. Concentration profile for a system of initial uniform 2 at.% 
impurity content under the effects of an spherical Gaussian heat 
spike of 30 keV, in Ag. Negative thermal coupling coefficient 
CT = ~ 101 KP/s. 

determine some of them from molecular dynamics simula- 
tions. 

In Fig. 2 we show the concentration profile for a 
system of initial uniform 2 at.% Cu content in Ag under 
the effects of an spherical Gaussian heat spike of 30 keV 
of total energy and energy density corresponding to Ag. 
For this example, thermal conductivity is extracted from 
Ref. [5], diffusion coefficient from the hard sphere model 
of Protopapas et al. [ 151 and thermal coupling coefficient is 
chosen arbitrarily as cT = - lo4 K AZ/s. Thermal conduc- 
tivity and heat capacity are taken from the literature with 
their temperature dependence included in the calculation. 
Note that this work is a parametric study in terms of cT, 
which is not available in the literature. The situation with 
negative coupling corresponds to precipitation, which 
should not be taken as the tendency to precipitation or 
segregation induced by thermodynamic forces derived from 
the phase diagram. In Fig. 3 we show equivalent results for 

Fig. 3. As Fig. 2, for a positive cT = 10’ KS/s. 
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Fig. 4. (a) Sensitivity to cT values: curve (a) cT = lo”, (b) 
cT = 103, (c) cT = lo*, (d) cT = IO’ and (e) cT = - 104, in units 
of K AZ/s. (b) Sensitivity to lattice temperature: curve (a) T = 900 
K, (b) 7’ = 500 K, (c) T = 100 K, (d) T = 10 K. Modeled material: 
Ag, T,, = 1234 K. 

a positive cT = 10” Kp/s, that would model the situation 
for ideal solid solutions. Fig. 4 shows the sensitivity to cT 
values (Fig. 4a) and to lattice temperature (Fig. 4b). 

In Figs. 5 and 6 we show results for real 10 and 500 
keV in Ag as described in the binary collision approxima- 
tion (Marlowe) and in the liquid drop model, containing a 
low concentration of solute Cu. Diffusion coefficient for 
Cu in Ag is taken from experimental results of Ref. [16] 
for the solid phase and from hard spheres model, Ref. [ 151 
for the liquid phase. Coupling coefficient is cT = IO4 
KA2?/s in both cases. Figs. 5 and 6 show solid circles 
where the concentration of solute is 10% larger than the 
initial values, together with the output of Marlowe show- 
ing the location of displaced atoms at the end of the 
collisional phase. 

This type of result is the main goal of this approach, as 
they can directly be related to what is observed in electron 
microscopy as cluster of defects after or during in situ 
irradiation. Clustering of solute atoms or intrinsic defects, 

6 -2 

Fig. 5. Results for a 10 keV cascade in Ag as described by 
Marlowe and the liquid drop model, containing a low concentra- 
tion of solute Cu. Open circles represent atoms that entered the 
cascade (output from Marlowe). Solid circles represent regions 
where the concentration of solute increased by more than 10%. 

is the result of a very complex process and through this 
description some of the important components can quanti- 
tatively be accounted for. A detailed analysis of these 
preliminary results is on the way. 

However, as mentioned earlier, the database from ex- 
periments is scarce for this temperature range, so here also, 
the computer simulations may provide valuable informa- 
tion. Solute diffusion in liquid metals as well as the 
coupling to thermal gradients cT can be obtained from 
molecular dynamics in a straightforward way for some 
systems that can be easily modeled. As an example, we 
show in Fig. 7 self diffusion of liquid Ni, as calculated by 
the mean square displacement of a model system described 
in terms of the embedded atom model [ 171 with two sets of 
potential functions provided by the Sandia group, namely 
that for pure Ni and dilute transition metal impurities [IS] 
and for Ni in the Ni-Al compound [19]. Also in Fig. 7 we 

Fig. 6. As Fig. 5, for a SO0 keV cascade in Ag 
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evolution of the microstructure, other factors, like thermo- 
dynamic forces derived from the phase diagram may also 
play a role in the picosecond time scale. Here also, com- 
puter simulations may help clarifying their relative impor- 
tance. 
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Fig. 7. Self diffusion of liquid Ni, using the embedded atom 
model with two sets of potential functions. Also shown results of 
a hard sphere model. 

report the values predicted by Protopapas et al. [15] with 
their hard spheres model. As far as we are aware there is 
no experimental information for this metal. As we can see, 
Arrhenius plots correctly predicts the trends, but signifi- 
cant differences exists among the different description, 
revealing how difficult will be to arrive at a point where 
predictive capability in heat and mass transport in collision 
cascades be reached. 

In summary, we show in this work some progress done 
in an analytic description of transport in collision cascades, 
namely a rigorous treatment of the 3D Stefan problem, a 
parametric study of mass transport in thermal gradients 
and preliminary results on a database for heat and mass 
transport in dilute metallic systems constructed using 
molecular dynamics simulations within the embedded atom 
model. 

Although these effects produced by giant thermal gradi- 
ents are probably the most relevant for the short term 
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